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SUMMARY

The problem of formulating an orthogonal, analytic (i.e., non-
numerical) coordinate system for use in a simulation of the coupled
ionosphere/magnetosphere/soltar wind system which has been perturbed by a
high altitude nuclear explosion at high magnetic latitude has been inves-
tigated. Experience with existing MHD codes, which simulate the behavior
of mid-latitude ionospheric plasmas, indicates that a very useful coordi-
nate system to use in such studies is one which is aligned with the geo-
magnetic field. Unfortunately, the presence of magnetospheric field-
aligned current systems precludes the possibility of constructing an anal-
ogous orthogonal magnetic-field-aligned coordinate system suitable for the
high latitude problem. It is possible, however, to characterize an inter-
esting class of possible orthogonal coordinate functions which generalize
the formal structure of the dipole-field-aligned coordinate system in a
mathematically simple way. One member of this class - referred to above
as the "zeta-coordinate system" - has been studied in considerable detail.
This coordinate system is dipolar in character at small distances from the
origin but becomes cylindrical at larger distances. It can, therefore, be
used to generate computational meshes which appear to be better tailored
to the requirements of the high latitude problem than those which can be
generated using standard coordinate systems. The zeta-coordinate system
is double-valued. The nature of this double-valuedness can be specified
quite precisely, however, and does not seem to offer an impediment to the
use of this coordinate system in practical applications.
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SECTION 1
INTRODUCTION

For the past several years, the Defense Nuclear Agency (DNA) has
been pursuing a research program to develop a comprehensive understanding
of the phenomenology of high altitude nuclear explosions. The motivation
for this effort has been a recognition, spawned in the early 1960s by high
altitude nuclear tests (over the mid-Pacific near Johnston Island)!, that
nuclear explosions at ionospheric altitudes could produce widespread and
Tong lasting detrimental effects upon radic communication links, radars,
and optical or IR sensors. In addition, such explosions can disrupt the
operation of electrical equipment through the phenomenon of electromag-
netic pulse (EMP). In the 1970s, the primary emphasis of DNA's research
was directed toward effects at low and mid latitudes (Jow Tatitudes
because all of the high altitude nuclear tests were conducted at magnetic
L-shells of about two or less, mid latitudes because of the location of
COMIS). The scope of current research efforts includes examinations of
existing data from atmospheric nuclear tests, theoretical efforts to
develop new understandings which go beyond available data, and non-nuclear

experiments.

As the overall picture of high altitude nuclear phenomenology
has become more complete, the DNA community has shifted from simply trying
to sort out gross effects to developing a refined picture of high altitude
nuclear explosions and the manner in which they interact with their sur-
rounding environment. With this evolution in thinking has come a recogni-
tion that the high altitude environment at high magnetic latitudes (the
auroral oval and polar cap regions) is, in a number of respects, quite
different from that at mid and low latitudes.

5
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From the nuclear weapons effects point of view, the uniqueness
of the high latitude ambient environment stems from the departure, at
polar latitudes, of the earth's magnetic field from a dipolar geometry.
(Refer to Figure 1.) The key issues are the physical processes which are
linked to the highly distorted geomagnetic field. At low and mid magnetic
latitudes (L-shells of ~12 or less), the field lines are closed and
fairly closely approximate dipole field lines. These field lines lie
within the plasmapause and are shielded by the magnetosphere from direct
exposure to the solar wind. In contrast, magnetic field 1ines originating
in the polar regions {high L-shells)} extend out into (and perhaps through)
the magnetosphere where they are exposed to the influences of the solar
wind, At high tlatitudes, energy delivered to the magnetosphere by the
solar wind can be transferred to the polar ionosphere by electrical cur-
rents which descend along polar magnetic field lines from the magneto-
sheath. These are the Birkeland currents.? Studies? by specialists in the
theory of current driven plasma instabilities suggest that these currents,
which are unique to high latitude field lines, may drive plasma instabil-
ities which lead to ionospheric structure at scale sizes which can affect
radio and radar transmissions over a broad frequency spectrum. This iono-
spheric plasma structure may bear similarity to field-aligned structure

which develops in plasmas produced by high altitude nuclear explosions.

In recognition of the significance of such naturally occyrring
effects, and in view of the direct connection of such effects to the high
altitude nuclear phenomenology problem, DNA has undertaken a research
program to acquire in-situ data at polar latitudes. The program has
included the WIDEBAND Satellite Program® and, more recently, the HILAT
Satellite Program.> Each of these programs involved/involves active
jonospheric probes from polar orbiting spacecraft. DNA has also pursued
theoretical efforts to understand the basic phenomenology leading to
disturbances in the ambient ionospheric environment and to understand the
connections ¢ the physics of that phenomenology to the nuclear effects




*34aydsojaubeu s, y3des oyl J0

—— — — —
T c——

MILA DLIBWSYIS y  *{ 9un

- ) ~ ~ N\ A
///
L, \\\\\\

10045 ewse|q \\\\\\\\WMMM““ % ..ﬂ“\\ /
——— g /
- 7
/s
— -

— —

e — — IUY -

asnedojaubey

|a




problem. Data from the WIDERAND satellite and the associated theoretical
interpretations of that data have had a direct influence on the currert
state of understanding of propagation effects resulting from structured

6

plasma environments.® A similar wealth of information from the HILAT

satellite is anticipated.

There are other reasons to be interested in high latitude
phenomenology. MNote that the solar wind energy flux incident on the
magnetosphere is equivalent to ~10 KT/hour to ~10 MT/hour, depending
on the state of magnetic activity. Under naturally occurring conditions,
only a small fraction of this energy flux is directly coupled into the
magnetosphere system. However, it has heen suggested that a high altitude
ntclear explosion at polar latitudes could possibly alter the amhient
magnetospheric current patterns in such a way as to deliver over a broad
area of the polar ionosphere an energy input equivalent to perhaps mega-
tons per hour of adcitional nuclear explosions.’ The sources of this
energy would be twofold: i) energy stored in the current systems within
the magretosphere, anc ii) energy delivered to the magnetosphere by the
solar wind and directly transmitted to the polar ionosphere. The proposed
initiator of this process and conduit for the energy flux is the nuclear
p.ume, a magnetic-field-aligred column of high density plasma created by a
high altitude nuclear explosion, which may reach several tens of thousands
of kilometers from the polar ionosphere up into the magnetospheric cur-

rents.

At present, this concept has not been explored by theoretical or
experimental means. The equations which are thought to describe the
coupled ionosphere/agretosphere/solar wind system under ambient condi-
tions are complex, and the magnetic field geometry in which these equa-
tions need to be -olved is formidable. In addition, the extra complica-
tions introduced by a high altitude nuclear explosion render the nuclear
effects prohlem cuite difficult.

4




A first step in attacking this problem is to develop a suitable
framework in which to perform calculations. Due to the complexity of the
problem, it is assumed that the theoretical approach will involve numeri-
cal calculations. This report describes a specialized, three dimensional,
orthogonal coordinate system which has been developed for the purpose of
nurmerically modeling the earth's magnetosphere and the interaction of high
altitude nuclear explosions with magnetospheric currents. Because the
magnetosphere spans an incredible volume by terrestrial standards, and
because numerical simulations of it must treat, with some sensible degree
of spatial resolution, features with a wide range of characteristic scale
sizes, the well known coordinate systems (Cartesian, cylindrical, and
spherical) are easily shown to present formidable problems. If one wants
to resolve simultaneously "fine scale" features near the earth (e.g.,
Birkeland currents and associated ionospheric processes), some measure of
detail in the bow shock and magnetopause regions (e.g., coupling mechan-
isms by which solar wind energy is transferred to the magnetospheric cur-
rent systems), and very large gradient length features associated with the
tail region (which stretches many tens of earth radii in the antisunward
direction), then a coordinate system/computational grid combination with
enough flexibility to distribute grid points or cells in an appropriate

fashion with economy of computer resources is required.

Yhen one sets out to design a computational grid withinr which to
model the magnetosphere, one rapidly finds that direct application of the
well known coordinate systems leads to an enormous number of grid cells
which far exceeds the high speed memory capacity of any present-day com-
puter, Furthermore, none of these coordinate systems paturally matches
all of the boundary surfaces or important features of the magnetosphere,
For example, the spherical coordinate system is ideal for modeling the
ionosphere and features nesr the earth (provided one makes it a geocentric
coordinate system), but far from the earth, spherical coordinate surfaces

don't match the shape of the outer portions of the magnetosphere or con-
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without loss of generality. This is the required conclusion. To estab-
1ish the second part of Theorem 2, suppose R¥=O so that R, = r+a,, modulo
an irrelevant multiplicative constant. The analysis above remairs valid
up to and including Equation (3-16), but now it is possible that k 3 does
not vanish, Assume this happens. Then none of the ki's can vanish,
Using Equations (3-9) and (3-10) one obtains

R' +a
2.y, (R0 (3-27a)
R, r

and
3=k, (R (3-27h)
R r

Irserting these expressions into Equation (3-12) results in

o+ .

ky &, QSWFWQL)Z = ¥ (3-2¢)

Sirce this true for all r, a, rwst vanish. To determine ¢, and &,, use
Fquation (3-13):

® t

d
®j =~k ‘;% (3-29)
)
or
$
-ky [ dp 3%
by = e z . (3-30)

Mote that Equation (3-13) is the only constraint upon the functions o, so
that 9, i< arkitrary here. Vithout loss of gererality, then, one may
redefine ¢, » o?kl. This Teads to

23




Rl
_g=k; Ry (3-21)
R, r R1
or
R, dr
=
R

R, = e ! (3-22)

up to an irrelevant multiplicative constant. Also

OI
-2 =%, cot © {3-¢3)
5 1
2
or
= cink
9, = sin"lp . (3-24)
2

By Equation (3-11), R, and 0, are both constant. To determine ¢, and 9,
consider Equation (3-13h). One of Qé and 0; must vanish, If ¢S vanisheg
then the ¢'s no longer define a three dimensional coordinate system, so
that, in fact ¢é must vanish, Thus, ¢, must be constant, leaving ¢, arbi-

trary. To summarize, it has been shown that

R, dr
IPZR' K
gy = e 1 sin 9! (3-2%a)
g3 = ¢,(s) (3-25b)

up to irrelevant constants. Again arguments given in Section 2 imply that

L, and ¢, may be defined by

f R] dr
ré R’
g = e I sin 8 (3-26a)
and
t3 T 4 {3-26b)
22
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’
The requirement RY + (' may now be used to show that ky = 0. From (3-9b)
and (3-10b)
R' R! R
2 3 =gy ky ()2 (3-17)
1 R2 VT ‘
R, Ry reRy
Substituting inta (3-12b), there results
ky ko (Ryy2
_ 1ye -y 3-18
2 (P') 3 { )
1
or
k, kK, R =+k, rR'. 3-19
vk ky Ry = kg r R ( )
Differentiating both sides and using (3-16), this becomes
7k 4 Rl = /k3R; +v/k3 rR'l' (3-20)
which implies k; = 0 since RI + 0, Of course, (3-16) now also implies
that k3. k, and k k, all vanish. From (3-9), (3-10), and (3-11) k, and k,
cannot both vanish, however, for then {R{, o, ¢, } would vanish for one of
i =2 or 3. This would mean that ¢, = constant for i = 2 or 3, and {z;}
vould no longer define a three dimensional coordinate system, Thus, there
are two alternatives.
Either k, = k3 = k, = 0 with k; #0 or k; = k3 =k, =0 with k, #0.
The symmetry of form present in Equations (3-9) and (3-10) implies that
the coordinate systems determined by each of these alternatives are the
same - one may consider only the first alternative without loss of
generality. From Equation (3-9) then
21
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and
2 ] ] ] | t '
reR'R el o d' ¢
MNP ShiE RO hic SRR L Tt B (3-11)
RoR3 0, 03 sin®0 &, &
Equation (3-11) in turn implies
r2 R' R' 0 o' 1 ()' °I
2 3 - . [_2.__3 + oy 2 3 ] (3_123)
R, Ry 0, 6, sin ¢, o,
= ky . (3-12bh)
The right hand side of Equation (3-12) may also be separated
o! o 3 9!
sinZg (2.3 +k,) = - 23 (3-13a)
2 93 %, &
i
= ky . (3-13b)

A1l the ki above are at this stage arbitrary corstants. The proof is
completed by showing that some of these constants must vanish and by using
this information to delimit t'e form of the various derivatives occurring
above, Myltiplying (3-9) by (3-10) one obtains

o! o!

2.3 =k, k, cot?e . (3-14)
0, O3

Substituting this expression into (3-13a) results in

sinZg [k, k, cot?g + ky] = ky . (3-15)

The valic:ty of Equation (3-15) for arhitrary 6 implies the following
impr-tant relationship among the separation constants

ky =k, =k, Kk, . (3-16)
2v
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A‘.SP
Vg, o+ Uy ® 1<‘L F«‘; cos 8 0y &,
: . ' _
- r7 R193 in A 03 03 (3-/)
=0,
and
Vig s Veg = RURL G, 0y 0, 0,
= R K, oo, ¢, (3-¥)
+ 1, Ry Ry 0, 0 8
r? <in?p ' ‘
|
f {
¢ =
f o . R1P, | .
[ Dividira both sides of (3-6) by {.L:2 cos 8 0, &,} and noting that if a
r
function of r alone is equal to a function of @ alone for all r and @,
then these two functions must hoth be equal to a constant, one obtains
| rZ R' R! o
i —Ah 2 = tan 9 2 (3-9a)
i R, R, 0,
; =k, . (3-9b)
Similarly, (3-7) and (3-8) imply respectively
2 ' '
r<R!R 0
—L 3 = tan g 2 {3-10a)
R1 R3 0,
= ky (3-10b)
19 ‘ ,
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5
if RY # 0, (Here the primes imply differentiation.) If R: = (}, then the
followirg set of coordinate functions is the only additional possibility:
gy = r cos 6, (3-4a)
£, = r sin 8 9,(¢) , (3-4b)
and
- _0'1_ .
g3 = rsin g e 2
Here ¢,(¢) is an arbitrary function such that 0; 0,
Proof: The proof is accomplished hy using the orthogonality requirement ‘
to develop a system of simultaneous partial differential equations for the 1
Ri’ Oi and oi. These equations may then be solved in terms of a set of
separation constants kj to obtain the required result. Proceeding then,
the orthogonality requirement
Vg, o v;j =0, i*tg, (3-5)
implies
Vg, - Vg, = Ri Ré cos 6 0, ¢,
-1 iR, sin o e e (3-6)
?2' 172 2 2
= 0 .
%
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SECTION 3
A CLASS OF POSSIBLE COORDINATE FUNCTIONS

In this section, two results will be presented regarding the
possibility of formally generalizing the mathematical structure of the
dipole-field-aligned coordinate system described in Section 2. Many
possible generalizations might be explorecd. However, for the sake of
analytic tractability, attention here will he restricted to coordinate

functions of the form

r = R(r) o{8) &l¢) (3-1)

where r, 8, ¢ are the usual spherical coordinates. Coordirate functions
of this form will be referred to as "separable coordinate functions." We

present two important theorems,

Theorem 2

The most general set of "separahle coordinate functions,”

including the coordinate function

gy = Ry(r) cos 8 (3-2)

and satisfying the requirements of orthogonality, is given by

g, = Ry(r) cos o, (3-3a)
Rdr
rep'
g, = ° sin 9, (3-3b)
and
gy = 6 (3-3c)
17
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Thus, a magnetic field B, obeying the usual Maxwell equations, cannot
> +> »>

possess a pseudo-potential unless B « J vanishes, where J is the
> total total

total current associated with B, Therefore, the field-aligned currents in

the magnetosphere prohibit the existence of a field-aligned coordinate

system,

Even though the presence of field aligned currents forbids the
existence of an orthogonal coordinate system aligned with the magneto-
spheric ﬁ field, it may be still possible to design a coordinate system
which is more faithful to the particulars of the earth-solar wind geometry
than one of the standard coordinate systems. Such a coordinate system
might, for example possess a dipolar or spherical character near the sur-
face of the earth but transition to a more cylindrical behavior at large
distances from the earth in order to conform to the elongated configura-
tion of the magnetosphere (c.f. Figure 1). The remainder of this report
is dedicated to an exploration of this idea.

16
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coordinate system defined by Equations (2-4) permits a ready decomposition
of the plasma motion into components which are either parallel or trans-
verse to this magnetic field. Experience has shown that such a decompo-
sition is crucial in simultating the detailed aspects of plasma hehavior
relevant to high altitude nuclear phenomenology while meeting the con-

straints of available compiiter resources.

Given this experience, it seems appropriate to begin attacking
the problem with which this report is concerned by asking whether or not
it is possible to construct an orthogonal coordinate system aligned with
the non-dipolar, solar-wind-distorted magnetic field of the earth's mag-
netosphere (c.f. Figure 1). Interestingly enough, it can be demonstrated

that the presence of field-aligned currents within the magnetosphere

rigorously precludes the possibility of such a construction. The validity

of this statement is directly implied by the following necessary condition

> ¥
for the vector field F(r) to possess a pseudo-potential.?®

Theorem 1

> > +>
If the vector field F(r) has a pseudo-potential ¥(r), then
>

>
F « UxF must vanish.

>

>
Proof: F « 9xF

= u(r) 9Y .« Tulr)vY (2-6)
= u(r) 9 « [u(r) x V¥ + u(r) Vxv¥] (2-7)
=0
15
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>
for some i. If Fquation (2-3) hoids, u(r) is saic to pe an integrating
+

factor and g; A pseuda-patential for the field F,

An interesting example of these ideas, important for MHD simuia-
tions of mid-latitude ionospheric plasmas, is the geomagnetic-difole-
field-aligned coordinate system.

This coordinate system is defiped by tre
coordinate functions™ a, 8, v:

cos a = (gﬁ)z cos 8 ,

(2-4a)
. - R(—‘ 1/2 .
sin g = (§~) sin @ , (2-4b)
and
Y= ¢ . (2'4C)

Here, Rp is the radius of the earth anc¢ (R, 9, ¢) are geocentric spherica!
coordinates with the colatitude 8 being measured rrom the geomagnetic
pole. a, B, and y satisfy the orthogonality conaitions (2-2). In addi-

tion, it may be easily verified that the gradient of « is proportional to
>

the geomagnetic dipole field, Rdipolp’ given hy

»>

. Reys S e 5 .
Ruipole -.31 (5") (2 cos ar + sin g 8] (gauss) (2-5)

where r and 8 are radial and colatitudinal unit vectors. For an iono-

spheric plasma moving in the dipole magnetic field of the earth, the

*

Notice that the sets of coordinate functions {¢. |} and {f.(gj)} (no sum

or i) describe equivalent coordinate systems siAco the g}ad ent of ¢,

and that of fi(si) are parallel. This freedom of definition has beeh
on

used in Equat (2.4) to define coordinate functions a, 8, ¥y which
are measured in radians,

14
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SECTION 2
SOME PRELIMINARY CONCEPTS

As a prelude to a detailed discussion of the problem with which
this report is concerned, it may be useful to review a few basic defini-
tions regarding the concept of a coordinate sycstem. Following Reference

9, a coordinate system is a threefold family of surfaces with defining

equations

+>

g;(r) = (constant). , 1

; (2-1)

A
-
| A
w
-

>
which may be inverted to yield r as a function of the ;i‘s. The Cils are

referred to as coordinate functions and the intersection of two of the

surfaces defined in (2-1) is called a coordinate line. The coordinate
system defined by {;i} (z {g128,555}) is said to be orthogonal if

Vci . VCj =0,

i#]. (2-2)
In practice, the property of orthogonality is an important simplifying
feature of a coordinate system., For this reascn, as stated in the intro-
duction, only orthogoral coordinate systems will be considered in this
report. One last concept which should be menticoned at this point is that

of a field-aligned coordinate system. A coordinate system {c } is said

to be aligned with a vector field F(r) if v, is parallel to F for some
i. This means that there must exist a scalar function u(r) such that

>

w(r) vz, = F(r) (2-3)
13
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Given that the unusual geometry of the magnetosphere is a cause
for difficulty, one might be tempted by the idea of a magnetic-field-
aligned coordinate system. This approach will be explained later in this
report. The idea is quite attractive, but as will be shown, the differen-
tial geometry of such an idea is incompatible with the physics of the

magnetosphere.

The coordinate system developed in this report, the "zeta coor-
dinate system", has been designed to have desirable geometric properties
in the near-earth region (i.e., it can match selected features in and
above the ionosphere) and to transition gracefully to a coordinate system
which allows for simple exterior boundary surfaces. The coordinate sur-
faces of this system can be made to conform closely to dipolar surfaces
near the earth (so they look 1ike a field-aligned system there). These
coordinates retain enough flexibility to permit the user to orient the
dipole axis arbitrarily relative to the earth-sun axis, Far from the
earth, the coordinate system approaches a cylindrical system with the axis
along the earth-sun direction. The zeta coordinate system is orthogonal.

The following sections of this report explain the theoretical
hasis for this coordinate system. In Section 2, a brief review of some
basic mathematical concepts relevant to the study of coordinate systems is
presented. In Section 3, an attempt is made to generalize the mathemati-
cal form of the dipole-field-aligned coordinate system® which has been
used previously for modeling low and mid latitude nuclear effects. This
results in a simple characterization of an interesting class of possible
coordinate functions., Next, in Section 4, one member of this class, the
zeta coordinate system, is examined., This system is well suited to per-
forming simulations of magnetospheric physic-, Finally, the results are
summarized in Section 5.

12




farther in the antisunward direction than in the sunward direction without
any problem. However, near the earth the coordinate surfaces do not match
the geometry of the ionosphere. In order to resolve details in the iono-
sphere, the cylindrical cells must be relatively small (~50 km on a

side, for example). Direct extension of the resulting cylindrical coordi-
nate surfaces to magnetospheric distances leads to a large number of
computational cells which are much smaller than is appropriate. This
means that one must resort to numerical "fixes" to try to make the simula-
tion physically sensible in an important portion of the problem {the iono-
sphere), subject to the constraint of a limited computer memory (i.e., a
limited number of grid cells).

A third candidate is Cartesian coordinates. The situation is
similar to that of cylindrical coordinates. Far from the earth, the
boundary conditions are easily implemented, but near the earth, coordinate
surfaces do not match the natural geometry of the problem. Closely spaced
coordinate surfaces near the earth translate into excessive numbers of
unnecessarily small grid cells well out into the magnetosphere.

It is worth noting that so far only orthogonal coordinate sys-
tems have been considered. This has been deliberate. In order to insure
that the differential or integral equations that are to be solved to simu-
late the magnetosphere remain tractable, we have chosen to require ortho-
gonality of any candidate coordinate system. Experience has shown that
the effort required to implement on a computer complex equations in a non-
orthogonal coordinate system can become unreasonatly large. In addition,
we impose the requirement that the candidate coordinate system be analyti-
cally generated. This requirement allows one to perform a fair amount of
exploration of the physics equations before going to the computer,

11




form to the streamlines of the solar wind. If one wants the bounding sur-
faces of the computational space to be simple coordinate surfaces (spheri-
cal in this case), then a grid which extends well out into the ragnetotail
{say 40 earth radii) will also extend well out (40 earth radii to be
exact) in the sunward direction. Unfortunately, that means slightly less
than half of the entire grid volume will lie sunward of the bow shock in
the zone of unperturbed solar wind. For many problems, this situation
represents a tremendous waste of computer resources (storage and central
processor time). This problem can be overcome by programming the computer
to chop out or ignore grid cells in uninteresting regions, but only at the

expense of computer code simplicity.

Also note that if one wants spatial resolution of 2 earth radii,
for example, at a distance of 20 earth radii, the angular separation of
radial grid lipes needs to be 0.1 radians. Therefore, in a simple-minded
application of spherical geometry, these radial lines define cells in the
ionosphere which have dimensions on the order of 650 km -- far too large
to be useful. Conversely, choosing the cell dirensions and racdial coordi-
nate surface spacing according to ionospheric criteria leads to numerous
cells at large distances from the earth which are inappropriately small,

These considerations lead to the conclusion that spherical
coordinates are not particularly well suited to the magnetospheric
prohlem, Numerical calculations in a spherical coordinate system would
require substantial effort just to define an acceptable computational
grid.

It is appropriate to next investigate cylindrical coordirates.
Assume the cylindircal axis lies along the earth-sun line, (The reader
may wish to convince himself that other orientations are of limited util-
ity, at hest.) Then boundary conditions far from the earth (outside the
ma gnetosphere) are simple to implement, and the grid can be extended much

10
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Summarizing,

-k, f d¢ _%

k, ¢!
®3=e 12
¢
-ky [ dp =
[}
= e 2,

tions above:

and

g, = rcos e,

. k
(rsin 6 ¢,) 1 |

)

[
- [ de 2
[ de 3

3

(r sin g e

2 )kZ

3

vhich is equivalent to the desired result.

Theorem 3

The only set of coordinate functions {Ci} satisfying orthogonal-

ity and separability and such that

gy = Ry(r) sin o8 cos ¢

is the set of cartesian coordinate functions.

Proof:

(3-31a)

{3-31b)

the following expression for the g, are implied by the equa-

(3-32a)

(3-32b)

(3-32¢)

(3-33)

The orthogonality and separability requirements may be used as in

Theorem 2 to develop a system of simultaneous partial differential equa-

tions.

These equations are then solved in terms of a set of separation

24




constants to show that one of the coordinate functions must have the form
R{r) cos 6 so that Theorem 3 follows as a corollary of Theorem 2. To
proceed with the proof, note that the orthogonality criteria are

it

Vg, « Vg, R; Ré sin 6 0, cos ¢ ¢,

1
+ 1
= R1 R2 cos © 02 cos¢d 9,

(3-34)
1 R, R, sin 8 9, sin 6!
! r? sin? g 1 o2 2 b %
=0,
Vg, + Vg, = R; R; sin 8 0, COS ¢ &, |
‘ s ] Ry R 8 0! cos ¢ ¢
j =z 1 Ry cos y €08 3
| (3-35)
n R, R, sin 8 05 sin ¢ ¢
rZsinZ g ! 3 3 %
=0,
i
¢ and
Vg, * Y5y = Rz R3 0, 03 ¢, 9,
+ ! R, Ry 0' 0! ¢, ¢
! (3-36)
: + ——da{_——-R R, 0, 07 ¢. 9!
; r2 sinZ g 2 37273 %273
=0 .
, 25
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From (3-34) ang {3-35)

rZRC R g o’
1 1

1 i
————+ — cot § - 77— — tan ¢ = O 3-37
R]_ R) O] sin 6 01. ¢ ( )
for i =2, 3, This implies
re R; R;
—_— = k. 3-38
Rl R. 1 ( )
i
and
o tan ¢ &
—_— 8 - —— T W s . -
Oj cot ;?;7&6 ¢i k1 (3-39)

Equation (3-39) Mmay be separated to produce

N
[al Cos 8 + k; sin 8] sin g = ks (3-40)
i
and
:
— tan ¢ = + Kogi - (3-41)
Y

Turning to Equation (3-36) one finds

rZR'R' gt g o' @'
‘“‘23’““2‘“1*“7"‘—*23 - = 0. (3-42)
RaR3 0,0, sinds o, o,
26
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This implies

FZ RI Ru
—2_3 = kg
Rz R3
and
0! o! o 9!
2 73, 2 3 =

S 2
0, 03 sin“e ¢, ¢,

The last equation may be further separated to produce

o! o!

(G52 + kg) sin%e = - k5
2 Y3
and
%' 3!
—Z-—l=+k7.
¢, 93

- kg -

(3-43)

(3-44)

(3-45)

(3-46)

The above equations can row be solved for the various k. and the required

result obtained. First, note that Equation (3-41) implies

) ’
23 tan2¢ = ks k,_*
¢2 &4

With the help of Equation (3-46) this becomes

k, tan2y = kg k,

which implies
k, =0

and

keky, = 0 .

217

(3-47)

{3-48)

(3-49)

-
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Nt

® 4
Thus, hy Equation 3-46, one of —2 , -3 must vanish. Suppose —2 = 0

Then, by Equations (3-39) and (3338) }

O )
2 =-kytan ®
£F)
and
R _ ko Ry
R,y rZ R'

L7

(3-50)

(3-51)

Clearly, k, canrnot vanish if {Ci} is to define a three dimensional coordi-

nate system. The above equations imply

| ar R,
rZ R K
gy = [e L' cos g] 2
or equivalently
R
dr —d.
f or b,
g, = € 1 cos 8 .

(3-52)

(3-53)

Given the non-trivial ¢ dependence hypothesized of £, Theorem 2 forces

¢, =T sin 8 cos ¢ ,

g, = r cos o

and

t3 = r sin 9 sin ¢ .

8

(3-543)

{3-54b)

(3-54¢)



Q'
A similar result follows if one takes Si = 0., This is the desired conclu-
3

sion.

Theorems 2 and 3 rather severely limit the extent to which it is
possible to generalize the dipolar field aligned coordinate system in the
manner described in Section 2, using separable orthogonal coordinates. To
see this, note that such a generalization rust involve one coordinate

>

function g,(r), say, which satisfies

N >

« I ” _
g (r) » Vdipole e o for values of r RParth (3-55)

“O

>
Here, p is the moment vector associated with the dipole field to which the

coordinate system involving g, is aligned in the near earth region. Now

>

>
p er =p, rsingcos ¢ +p,rsinesin ¢+pyrcos 8 (3-56)

In orcder for the coordinate function t; to be separable, §i= 0 61 for
some particutar 9, 1f i = 1 or 2, then Theorem 3 implies that g, rust be
part of a cartesian system and so cannot become dipolar for any value of
r. 1f 1 = 3, thenr Theorem 2 completely fixes the set of coordinate func-

tions to which ¢, belongs once the radial dependence of g, is specified.

In what follows, the coordinate system resulting from the choice
of ¢, given by

g, = (r - kr-n) cos 9 (3-57)

for arbitrary non-zero constants k and n will be investigated with partic-
ular emphasis upon the case n = 2, For large r and positive n, g,
approaches the Cartesian coordinate z, For small r and n = 2,

approaches the dipole coordinate cos a. MNote that the spherical surface

29

I S A

0




1

. n+l Co
of radius k , centered at the origin is a surface of constant 5,. Thus,
>
the orthogonal coordinate system inciuding z,(r) also possesse. the quali-
>

tative features of a spherical coordinate system for a certain range of r,

30
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SECTION 4
A SPECIAL COORDINATE SYSTEM

The complete specification of the set of orthogonal coordinate
functions to which ¢, (Equation 3-57) belongs can be accomplished by using
Theorem 2. To do this, the following indefinite integral must be evalu-
ated,

[dr [__(L"SL“_] (4-1a)
r2 (1+nkr "1

n

= farf- L & (22 *.lf.-__] (4-1b)
nr Nl

= an[(r" + kn/r)l/n] + irrelevant constant , (4-1¢)

Inserting this expression into Equations (3-3) above, the following
coordinate functions are obtained:

gy = (r - kr-n) cose , (4-2a)
zg = (r" 4 nk"‘l)l/n sin® , {(4-2b)
and
L3 = ¢
31
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Specializing to the case n=2, fquations {4-2) become

£y = (r - k/r?) cos o , (4-3a)

¢, = /(rZ + 2k/;Y sin 8 , (4-3b)
and

23 T ¢ . (4-3c)

As a check, the orthogonality condition
“ V;;i-Vr,J,:U, i+j, (4-4)

may be explicitly verified by computing the gradients of the g above:

‘ 2k

Vg = (1 +535) cos 8 F - (1 - k/rd) sin g §, (4-53)
; r
|

- 2 - T -
VCZ = (.r k__/r—)_ sin 8 r + _1_ /(f‘z + 2k/r) cos 9 8 (Q-Bh)
/r2 o+ 2/r ’

| and
[ ] -
i VC3 = f‘_—S'l_n'é. ¢ . (4'5C)

While the orthogonality of the coordinate system defined by
{ci} is guaranteed by Theorem 2, the question of invertibility of this
coordinate system, i.e., of whether or not the specification of (gl,gz,gg

’ uniquely determines (r,8,4), has yet to be addressed. In order to treat
this question, it is useful to consider two separate cases: ;=0 and g, #0.

4
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7,70

In this case, hy Equations 4-3, there are two alternatives. Either:

r=kt/3 (4-6a)
o = sin~! (52 ), (4-6b)
v3 k1/3

and

b = 4 (4-6c)
or

8=+ /2, (4-7a)

P - hr+2c=0, (4-7h)
and

¢ = g3 - (4-7c)

The "or" here is of course an inclusive "or", ard the sign of & is the
same as the sign of Z,. The branch of this alternative which obtains for
a given triple (O'Cz’Cs) (and, hence, the answer to the question of inver-
tibility) is determinec by the magnitude of gp. If |gp) > /3 kY3, then
Equation (4-6b) has no real solution so that Equations (4-7) must be

used., The radial variahle r is then determined by the positive roots of
Equation (4-7h). As discussed in the Appendix, these roots are two in
number, One is always less than k}/3 and the other is always greater than
the k173, They are given explicitly byl0

ry = E: | 82| cos A (4-8a)
V3
and
2 4n
ro = 2 jg,qcos{A + 20) {4-8b)
7 1%l R




I

with
A = ! (05-1[:5!3_5] . (4-%c)
3 C;

Thus, the ¢ coordinate system is not strictly invertible for gy=t, and
’czl > ¥3 k'3, 0n the other hand, if 'Czl < V3 k13, then Equation
(4-7b) has no real roots (c.f. Equation 4-8¢c), so the use of Equations
(4-6) is necessitated. These equations yield unigue values of (r.3s, ),
thus insuring invertibility for z,;=0 and 'Czl < /E K3, Finally, if |;2’
= y3 k1/3, then Equations (4-6) and Equations (4-7) give the same unique
result, namely r = k1/3, g = + q/2.

;]¢0

In analyzing this case, it is useful to begin by isolating the
theta dependance in Equations (4-2a) and (4-2h):

—--— = c0S 6 , (4-9a)
ro- k/ré

gy o
—2f—— = sip § , (4-9p)
/2 2k/r

Squaring both sides of each equation and adding the results, there follows

2 2
gop T

(r3-k)2 3+ 2

=1 . {4-10)

This expression can be simplified by multiplying both sides by
(r3-k}2 (r3+2k), expanding the various products which arise, and collect-
ing powers of r, FEquation (4-10) then hecomes
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2 2 2
+C§)r7 - k(g -zy)r - 3k 3 - k2gor + 2k 3
-0 . (4-11)

Equation (4-11) implictly determines r for given ¢, and z, in terms of the
(positive) roots of a ninth order polynominal P(r). Unfortunately, the
complexity of Equation (4-11) appears to render duhious the prospect of
obtaining explicit analytic expressions for these roots as was done above
for the case z;=0. It is possible, however, to determine rigorously the
number of positive roots of P(r) and to obtain upper and lower bounds upon
each of these roots without henefit of such explicit knowledge. This is
done in detail in the Appendix, using certain theorems from the theory of
equations. Therein, it is shown that P(r) has precisely two positive
roots for ¢ #0. One of these lies in the interval (0, k1/3) anc the

other in the interval (k!/3, k1/3 + /M) where

2 2 2 2
M o= max[(gy+es), 2(5y-15), 3k2/3] (4-12)

Thus the g-coordinate system is double valued for non-vanishing values of
gy, Just as it is for g,=0, ;2>/§ Kl/3,

Even though the z-coordinate system is not strictly invertible,
as shown above, the lack of invertibility is of a sufficiently innocuous
form that this coordinate system may still be used in practical applica-
tion. It is simply necessary to specify a parameter which distinguishes
between the inside and outside of the sphere of radius k1/3, in addition
to the triple (;1,52,53). Then the polynomial P{r) can be numerically
solved for a unique value of r, either lying in the interval (0, k1/3)
or in the interval (k1/3, k!/3 + /ﬁ). A mesh which has been gererated
using this technique is shown in Figure 2. The value of k!/3 which has
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been chosen here is 6Re. The particular numerical algorithm employed in
solving for the positive roots of P(r) was the Newton-Raphson method.
In addition, the following constraints have been adhered to in selecting
the ¢, and ¢, contour values for this mesh.

a) Cells on the surface of the earth at a colatitude of 15°

have dimension ~ 100 km x 100 km,

h) The dimensions of successive cell boundaries along the
z-axis noving away from the earth increase by 157 until a
dimension equal to Rp ic reached whereapon the rate of

increase is reduced to zero,

¢} In the upper hemisphere, the dimensions of successive cell
boundaries along the surface of the earth are ircreased by
157 moving both clockwise and counter-clockwise from a
rolatitude of 15°, FRoundaries in the lower hemisphere are

obtained hy reflection in the x-y plane.

d)  The dirmensions of successive cell boundaries along the y-
axis tn the right of the circular boundary *ncrease by 15°
nintil a3 dimension equal to R is attained whereupon the rate

p

nt ircreased i< decreased to zero.

e rrrratere baye teen irpnsed inoan attempt to realistically meet

o e et o b e MED cnde decianed to cirmmlate the hehavior of a

’ ot e erccsbarie e lacma, Suchoa code should he capable of fine
Thear e v sty of the aproral aval and at the <are tire be
. i et roce toatures of magretosgpheric current systems,  The

oot rate ot arncrpace of Qgccecqive cell boundaries s

. ety Sy reer f0 ararize the tatal number of celle in the mesh
Ferge e eeet ot canpnter storage reguiree by the code) while
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=

The first substitution transforms the equation FIRY=L into the
equation 5(R‘)=O with

2 2 .2 2 _2 ;
F(R') = 2R'9 - ZR'® - 3R'® - 2(7[-Z,)R'S - (7 (#7)R" 7+ 1 . (A-7)

As before, implementing the next two substitutions rears rewriting P(R'}
as a polynomial in R™ = R'-1:

F(RY) = 3 h (2, 2, (R*-1)" . (s
n=0 "
This polynomial may also be shown (see helow), to [oscess
exactly one variation of sign for all 7, anc 7,, 2,#0. Again by
Descartes' Rule of Signs, this means that S(P‘) has one and only ocre root
greater than unity for each 7, and Z,, Z,#}. This ir turn irplies that
P(R) has one and only one positive root less tkan unity. Hence, P(r) has
one and only one root less than k'/3 for each Zy and 2,, 7,4, Since
r=k1/3 is not a root of P(r) for £,#0, the assertion that P(r) has only
two positive roots - one less than and the other greater than k13
will have been demonstrated once it has been shown that the coefficients
{an} and {hn}, for 0 < n < 9, possess one and only one variation of sign
for arbitrary 7, and Z,, Z,#0.

One way to estahlish this property of the coefficients an, b is
to calculate explicitly these quantities using Horner's Method. Figures
A-1 and A-2 show the results of applying this algorithm to the polynom-
ials 5(R) and E(R) respectively. The required coefficients, listed in
Table 1 for convenience, are given by the underlined terms in these

Figures. Consider first the an's. ag and ag are positive while a| and a,
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of the initial substitutions in this sequence. One particularly

advantageous choice is that set of substitutions which results in a

translation of R by unity. This set of substitutions is given by

R=21 41
R!
RI =1/R"
which leads to
R =R" +1,

(A-4a)

(A-4b)

{A-4c)

This choice is intuitively appealing because R=1 corresponds to r=k /3,

the radial value for which the character of the g-coordinate system

changes from being dipolar to being cylindrical. More importantly, the

polynomial 5(R) rewritten as a polynomial in R"=R-1,

9
P(RY = 7 a(z,,Z,) (R-1)",

(R-5)

may be shown to possess exactly one variation of sign for all Z, and Z,,

1,#0 (see below). Ry Descartes' Rule of Signs, this means that 5(R), has

one and only one root Ro which satisfies (R0-1)>0, i.e., P(r) has one and

only one root greater than kl/3

of P(r) less than kl/3, consider the substitutions

. To find the number of positive roots

(A-6a)

{A-6b)

{A-6¢)

R = .1_.

R
R' = 14

R
e L

R"
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is a real polynomial with the first negative coefficient preceded by k
coefficients which are positive or zero, and if G denotes the greatest of
the ahsolute values of the negative coefficients, then each positive root

is less than 1 + (g—)l{

0

The mathematical armada assembled above may now be brought to
bear upon the problem of analyzing the positive roots of P(r). It is
convenient to first scale P(r) by k3.

5 . P(r)
PR) = =5
_ p9 2,52\n7 2 .2 3
= RO - (23+425R7 - 2(22-12R* - R3 - Z1R2 (A-2)
with
- -
R = /s (A-3a)
- & -
Zl = m‘ s (A 3h)
and
7, = -2, (A-3¢)
S VE

Clearly Ro is a root of P(R) if and only if r = k1l/3 Ro is a root of
P(r). Hence, the objective of this Appendix can be accomplished by study-
ing the positive roots of P(R). As suggested above, one way to proceed in
this study is to apply a sequence of the suhstitutions prescribed by
Vincent's Theorem to 5(R) until one arrives upon a polynomial with no more
than one variation of sign. The amount of labor required to pursue this
approach can be minimized by a judicious {(or perhaps fortuitous!) choice
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The binominal theorem implies that this polynominal can be written as a
polynomial of degree n in (x-c):

= N _\n-1
fx) = A (x=c)" +A | (x-c) LTI IL

Horner's Method is an algorithm for calculating the coefficients Ai' It

works as follows:

First calculate AO. Do this by using synthetic division to
divide (x-c) into f(x). The result will be a polynomial, f (x),
of degree n-1 in x and & remainder which rust be Ao‘ Now divide
f, (x) by (x-c) again using synthetic division. The result is a

polynomial, f,(x), of degree n-2 in x and a remainder which must

be A;. This sequence is repeated for a total of n times. The |
final iteration produces the chvious result An=an. In practice,
it is convenient to arrange the various polynomial coefficients
occurring within this procedure in a superdiagonal array.The

i” row of this array consists cof the coefficients of fi(x)
arranged from left to right in decreasing rank order with the
last term being the coefficient Ai' An example of such an array
is shown in Fiqure A-1,

The final result from the theory of equations which will be required in i

this Appendix is a theorem which bounds the positive roots of a real
polynomial.

Result 4:

e

.
i
; |
f(x) = a, X"+ 3,1 X! ees +a, =0, a, >0,
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m is counted as m roots. Two consecutive terms of a real polynomial are
said to present a variation of sign if their ccefficients have unlike

signs.

As an example, the polynomial Equation (A-la) has two variations
of sign if Ef > E; and four variations of sign if Ef < Ez. Ir the first
case, Descartes' rule allows zero, two, or four positive roots. Clearly
Descartes' Rule by itself will precisely determine the number of positive
roots of a real polyromial only if the polyromial has no more than one
variation of sign. The following result is therefore a very useful
adjunct to Descartes' Rule.

Result 2: (Vincent's Theorem)

If an equation without muitiple roots is transformed succes-
sively by the substitutions

x = atl/y , y =b+l/z , z = ¢c+l/t ...

where a, b, ¢, ... are arbitrary positive integers, the transformed equa-
tion, after a sufficiently large number of such transformations, possesses

either no variations of sign or just one.

Descartes' Rule of Signs and Vincent's Theorem form the basis of
a universally applicable method of isolating the positive roots of a real
polynomial. In using this method it is helpful to have an algebraic
algorithm for efficiently performing the transformations required by

Vincents' Theorem. One such algorithm is known as Horner's Method.

Result 3: (Horner's Method)

Suppose




APPENDIX

In this Appendix, it will be shown that the polynomial P(r)

given by

2.2 2
P(r) = r9 - {gi+e)r? - 2k(gl~g§)r“ - 3k2r3 - kzggr + 2k3 (A-la)

has precisely two positive roots if £,#0. One of these roots lies in the
interval (0, k!/3) and the other in the interval (k3 + A1) where

M= max[(€24£2) , 2(82-£2) | 3k2/3)

As an immediate corollary of this result, it will also be shown that the

polynomial

0(r) = r3-€5r + 2 (A-1h)

has precisely two positive roots for gé > 3k?/3, One of these is always

1/3 and the other always greater than k!/3, The demonstration

less than k
depends crucially upon several results from the theory of equations which
are stated below without proof. Proofs of these results may be found in

references 10 and 11,

Result 1: ‘"Descartes' Rule of Signs"

The number of positive real roots of a polynomial with real

coefficients is either equal to the number of its variations of sign or is
less than that number by a positive even integer. A root of multiplicity

4
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11.
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in this scheme is generated using the g-coordinate system and therefore
possesses the advantages and disadvantages described in the preceding
paragraph, i.e., it is well tailored to the elongated geometry of the
magretosphere and allows simple solar wind boundary conditions, but it
also requires the existence of a spherical interface which would probably
require special treatment within an MHD simulation code.




n

accomodates both the dipolarity of the near earth magnetic field and the
elongated structure of the magnetosphere at large distances. An example
cf this rejoining is shown in Figure 3c. This particular mesh may be
completed in three dimensions, under the previously stated constraints
regarding the azimuthal dimensions of cells, by setting the angular separ-
ation between successive azimuthal planes of the innrer and outer meshes to
0,06 and 0,07 radians, respectively. [Motice that the use of an aziruthal
axis aligned along the earth-sun lipe allows the outer mesh to be much
shorter in the sunward direction, than in the anti-surward direction
corresponding to the fact that the magnetospheric bow shock region is
compressed toward the earth while the magnetotail is distended away from
the earth, Alsn, the use of such an axis permits a sirple specification
of solar wind houndary conditions., An apparent disadvantage of the use of
this type of hybrid mesh, for purposes of constructing ar MHD simulation {
code, is the presence of a spherical surface (at r = k1/3) upon which the
bourdaries of adjacent cells are not aligned. This surface would probably
require special treatment within such a code if spurious numerical effects

are to be avoided.

There are other ways to construct “hyhrid” meshes using the
g-coordinate system which should be mentioned hriefly here for complete-
ness. For example, instead of using the z' axis shown in Figure 3b as the
azimuthal axis of the exterior mesh, one might use the z-axis of the
g-coordinate system itself, now aligned along the magnetospheric axis of
elongation. This choice would concentrate resolution in the equatorial
regions of the mesh at the expense of resolution in the polar regions so
that it does not seem to be as desirahle an alternative as that pictured
in Figure 3 for the high latitude prohlem of concern here, Another option
is to generate the interior mesh of Figure 3 using a spherical coordinate
system, The benefits of dipolarity are thereby relinquished in favor of

the simplicity of a spherical geometry near the earth, The exterior mesh
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a)

L

by Z
Figure 3,
3a.

3h,

An il1Tustration of the use of two azimutha) axes in Yenerating a

The portion of the rmesh of Figure 2 which lieg within the circle
of radiys k1/3, The 2-axis isg chosen to he along the gecmagnet ¢
dipole axis,

The portion of the rmesh of Figure 2 which lieg outside the cipcle
of radius k1/3. The azimuthal axis 2' definegd in the text wou 1o

be taken 3¢ the axis pf elongation of the ragnetosphere,
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maintaining acceptable bounds upon numerical error arising from off-center
differencing. To complete the mesh in three dimensions, the contours of
of Figure 2 must be rotated azimuthally. 1In order for the azimuthal
dimensions of cells at the periphery of the mesh to be limited to - Re

and to maintain 100 km resolution in the vicinity of the auroral oval, the
angle between successive azimuthal planes in the full three dimensional

mesh should be taken equal to ~ 0.05 radian.

The three dimensional mesh described above fails to make optimal
use of the cylindrical character of the g-coordinate system at large
distances because the z-axis of this mesh is aligned with the geomagnetic
dipole axis rather than with the earth-sun lire. This problem may be
alleviated by using the g-coordinate system to generate a mesh with two

different azimuthal axes. 0One way to do this is illustrated in Figure 3.

In Figure 3a, the dipolar part of the mesh of Figure 2, i.e., that part
which lies within the sphere of radius k1/3, has heen isolated and is
shown with its azimuthal axis directed along the geomagreti: dipole axis,
just as it is in Figure 2. 1In Figure 3h, on the other hand, the remainder
of the mesh exterior to the sphere of radius k!/3, is pictured with
another axis, called z', being used to define the azimuth, z' is the
azimuthal axis of a coordinate system {c%} which is related to the
g-coordinate system by a simple colatitudinal translation:

' = (r - k/r?) sin 8 , (4-13)
1
;; = (r2 + 2k/r) cos o , (4-14)
and
¢ =4 . (4-15)

Since the meshes of Figures 3a and 3b both possess a spherical houndary at
ro=ki/3, they may be easily rejoined to create a "hybrid" mesh which
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aq

are negative for 7,20.

sign presented by these coefficients.

1. The coefficients {an},{hn} calculated by Horner's Method.

= - 317

2
-157¢

2 _2 2
= -9(21+22) - 2421 + 27

2 2 2
-27(Zy+7,) - 1671 + 81

n

-33(23+2%) - a2® + 126

-c(23473) + 126

= 7(2%472) + 4

"

2 2
-(Z27423) + 36

bg

2

-327

2
-127}

2 2
= 27-2121 - 922

108

2 2
207 -361,

2 2
207 - 1077 - 6072

234 - 27 - va7’ !
165 - 2872

72 - 812

18 - 22

2

Thus, there is always at least one variation of

It is easy to see that there are no

more variations of sign for arbitrary Z, and Z, with Z,#0 by considering

possibilities (a)-(f), below, regarding the magnitude of the quantity

2 2
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(b)

23425 > 36

In this case a; is obviously negative. In addition, each of

the terms 2, n<7, are also negative so that there is only
one variation of sign presented hy the coefficients {an} for
this case.

2 2
12 < 7y+7, < 36
Now a, is non-negative, but 2, for n< 6 is negative defi-

nite. Again there is only one variation of sign.

2 .52
6 < 2147, < 12
a7 and ag are hoth non-negative while a_for n<5 is negative
definite, There is only one variation of sign.

126 2 2
——— < 1+, < b
33 17z -

ay, ag, and ag are all non-negative while a for n<d is

negative definite. There is only one variation of sign,

2 2 126
3 <7,+2, < —
1772 " 33

a;, 3g, ag, are non-negative while a3 and a, are negative
definite. Hence, regardless of the sign of a,, there is

only one varijation of sign presented by the sequence of
coefficients {an}.

0 < Zf+Z§ <3

In this case, 3, for n>d is positive, Also

2 _2 2
a3-a, = -18(Z]+Z,) + BI] + 54 > 0,

so again there can only be one variation of sign,
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For arhitrary Z, and Z, with Z,#0 the quantity (Zf+2§) nust fall
within one of the intervals (a) - (f). Hence it has been shown that the
sequence of coefficients {an} presents only one variation of sign for all
1y, 1,, 1,#0. Now consider the coefficients {hn}. by and b, are negative
while bg is positive, so that there is at least one variation of sign
presented hy the coefficients of F. To see that there is in fact only
one variation of sign presented hy these coefficients, proceed as above to
consider several possibilities regarding the value of Z;, with Z% arbi-

trary but non-vanishing.

(a) Z, > 18
In this case, hn for n<8 is negative so that there is

ctearly only one variation of sign.

(b} 9 5»23 <18
Now hg and bg are non-negative while hn for n<7 is negative
definite. Again there is only one variation of sign.

bg, bg and b, are non-negative and bn’ for n<6 is negative;
there is only one variation of sign.

2 165
d) 3 <7, < 22
() 2 - 28

hgs bg, by, and bg are non-negative while b for n<3 is
n =
negative definite. Also
2 2
bg-b, = 27 + 82l +62,>0,
so that bg>b, for all 7,, 7,. Hence, there can be only one

variation of sign for this case also.
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(e) 75 < 3

For this case, the hn's satisfy the inequality
bg > b, > b3 > b, .
The first part of this chain has already been established

above. To demonstrate the remaining parts, compute the
differences

2
b,-hy = 99 + 1077 - 247,
and

2
by-b, = 81 + 25 - 2715 ,

which are both positive definite for 2363 and Z,#0. With this inequality
and the observation that by, bgs by, and b are positive for ng 3, it is
evident that there is only one variation in sign in the coefficients

{h 1 for this case also.

It has now been shown that P(r) has precisely two positive roots
for Z,#0. One of these roots lies within the interval (0, kl/s), and the
other lies outside of this interval. An upper hound for the larger root
can be obtained by using Result 4 above. It immediately follows by
inspection of P(R) that the larger root must Tie in the interval
(k1/3, k1/3 4 M) with

2 .2 2 2
' M = max(£)+E,, 2(£1-E,), 3k%/3) .
This is one of the results which was to he demonstrated in this Appendix.

To derive the other result, namely that the polynomial O(r)

(Fquation A-1b) has precisely two postive roots - one less than and the
\ other greater than k!/3, if |E2] 2 v3 k1/3, note first that
’ P(r) = (r3-k)2 A-9
! £,=0 (r7-k)" 0(r) (A-9)
i 56
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This follows by direct multiplication or hy inspection of Fguation {4-10)

in the text. Equation (A-9) can be rewritten

Pr) gm0 = (rek /D% (r2erk 20232 q(r) (A-10)
Since the polynomial comprising the middle factor of the right hand side
of Equation (A-10) has no variation of sign, it can have no positive
roots. Therefore, the positive roots of Q(r) are the same as the posi-
tive roots of P(")‘E =0 with the factor (r-ki/a)2 removed, Thus, the

1
above assertion regarding 0(r) can be demonstrated by showing that the
coefficients {an}n=2,9 and {bnln=2’9 above present one and only one vari-
ation of sign for g,=0, '§2l>/3 k}/3, That this is so can be seen immedi-

ately from the above discussion regarding these coefficients.

57

S

— - .

. s e e PR . :
‘- o . N e N e a e 4 e s

{

L ——



DISTRIBUTION LIST

Asst to the Secy of Defense
Atomic tnergy
ATTN: tExecutive Assistant

Defense Advanced Rsch Proj Agency
ATTN: GSD, R. Alewene
ATTN:  STO, W. Kurowskl

Defense Nuclear Agency
ATTN: RAAL, P. Lunn
ATTN:  RAAE, k. Schwartz
ATTN:  RAEE
I ey ATIN:  RAAE
3¢y ATIN: STTI-CA

Jefense Technical Information Center
12 ¢y ATIN: DG

Jeputy Under Secy of Defense
Comm, Cnd, Cont & Inteld
ATTN:  Dir of Intell Sys

Fiela Command, DNA, Det 1
Lawrence Livermore Nationai Lab
ATTN:  Fe-1

field Command, DNA
ATTN: FCPR
ATTN:  FCTT, W. Summa
ATTH: FCTXE

Joint Chiefs of Staff
ATTi:  C3S
ATTN: (3S Evaluation Office, HDOG

DEPARTMENT CF THE AKMY

US Army tlectronics R&D Command
ATTN:  DELAS-E0, F. Niles

darry {iamend Laboratories
ATTN:  DELHD-NW-R, R, Williams
2 ¢y ATTH: DLLHD-NW-P

US Army Nuclear & Chemical Agency
ATTN: Library

US Army Sateilite Comm Agency
ATIN:  Document Control

S Army Communications R&D Command
ATTN: DRDCO-COM-RY, W. Kesselran

DEPARTMENT OF THE NAVY

Naval fAcean Systems Cedter
ATTN: Code 532
ATIN: (Code 5322, M. Paulson
ATTN: Code 5323, J. Ferguson

Yiaval Spare Surveillance System
ATIN: J. Burton

Office of Naval Research
ATTN: Code 412, W. Condell

DEPARTMENT OF THE NAVY (Continued)

Nava: Research Laboratory
ATTN: Code 4108, [. Szuszewic:
ATTN: Code 4187
ATTH. Code 4700
ATTN: Code 4700, S. Ds<akow
ATTN: Code 4720, J. Davis
ATTN: Code 4780
ATTN:  Code 6700
ATIN: (Code 7500, 8. Wald
ATTN:  Code 7950, J. Goodman

DEPARTMENT OF THE AIP FORCE
Air Force Geophysics Laboratory
ATTN: CA, A, Stair
ATTN: LIS, J. Buchau
ATTN: LYD, ¥. Champion
ATTN: OPR, H. Gardiner
ATTN: OPR-1
ATTN: PR. Babcock
ATTN: R. 0'Neil

Air Froce Space Technology Ctr

ATTN: YH

Air Force Weapons Laboratory
ATTN: NTN
ATTN: SUL

Air University Library
ATTN: AUL-LSE

Asst Chief of Staff, Studies & Analysis
ATTN: AF/SASC, C. Rightmeyer

Ballistic Missile Office/DAA
ATTN:  ENSN
ATTN: ENSN, W. Wilson
ATTH:  SYC, D. Kwan

Deputy Chief of Staff, Rech, Dev & Acg
ATIN:  AF/ROGI

Electronic Systems Division/SC
ATTN: SCS-1E
ATTN: SC5-2, G. Vinkels

Rome Air Development Center
ATTN: FEP, J. Rasmyssen
ATTN:  CEPS, P. Kossey

Space Command
: BC, 7. tong

OTHER_GOVIRNMENT AGENCIES
Department of Commerce
ATTN: Sec Ofc for R. Moore

Department of Commerce
ATTH: R. Gruhb

Institute for Telecommunications Sciences
ATTN: A, Jean
ATTN: L. Berry
ATTN: W. Utlaut

IS BLANK

PREVIOUS PAGE

Y




NATO

NATO School, SHAPE
ATTN: US Documents Officer

OEPARTMENT OF ENERGY CONTRACTORS

University of California

Lawrence Livermore National Lab
ATTN: L-31, R. Hager
ATTN: Tech Info Dept Library

Los Alamos National Laboratory
ATTN: D. Sappenfield
ATTN: 0. Simons
ATIN: G-6, E. Jones
ATTN: MS 670, J. Hopkins
ATTN: J. Wolcott
ATTN: MS 664, J. Zinn
ATTN: R. Jeffries
ATTN: T. Kunkle, ESS-5

Sandia National Laboratories
ATTN: D. Dahlgren
ATIN:  D. Thornbrough
ATTN: Org 1231, R. Backstrom
ATTN: Org 1250, W. Brown
ATIN:  Org 4231, T. Wright
ATTN: Space Project Div
ATTN:  Tech Library 3141

DEPARTMENT OF DEFENSE CONTRACTORS

Berkeley Rsch Associates, Inc
ATTN: C. Prettie
ATTN: J. Workman
ATTN:  S. Brecht

EQS Technologies, Inc

DEPARTMENT OF DEFENSE CONTRACTORS

Maxim Technologies, Inc
ATTN:  E. Tsui
ATTN: 2. Marshall
ATTN: R. Morgenstern

Mission Research Corp
ATTN:

C. Layer
ATIN: D. Knepp
ATTN: F. Fajen
ATTN: F. Guigliano
ATTN: G. McCartor
ATTN: R. Bigoni
ATTN: R. Bogusch
ATIN: R. Dana
ATTN: R. Hendrick
ATTN: R. Kilb
ATTN: S. Gutsche

ATTN: Tech Library
2 cy ATTN: D. Maloof '
2 cy ATTN: M. White
5 ¢y ATIN: Document Control

Physical Dynamics, Inc
ATTN: E. Fremouw
ATTN: J. Secan

Physical Research, Inc
ATTN: K. Schueter
ATTN: R. Deliberis
ATTN: T. Stephens

Physical Research, Inc .
TIN: J. Devore i
ATTN: J. Thompson

R&D Associates J
ATTN: €. Greifinger !

ATTN: B. Gabbard ATTN: F. Gilmore f
\ ATTN: W. Lelevier ATTN: 6. St Cyr !
| ATTN: H. Ory !
‘ JAYCOR ATTN: M. Gantsweg .
ATIN: J. Sperting ATIN: P, Haas ‘
ATTN: R. Turco
Johns Hopkins University ATTN: W, Karzas
ATTN: (. Meng ATTN: W. Wright
ATTN:  J. Phillips
ATTN:  J. Newland SRI International
ATTN: K. Potocki ATTN: A, Burns
' ATTN: R. Stokes ATTIN: C. Rine
! ATTN: T. Evans ATTN: D. McDaniels ,
ATTIN: D. Neilson .
. Kaman Tempo ATTN: G. Price
K ATTN: B. Gambill ATTN: G. Smith
' ATTN: DASIAC ATTN: J. Petrickes
ATTN: W. McNamara ATTN: J. Vickrey
ATTN: M. Baron
Kaman Tempo ATTN: R. Leadabrand
ATTN: DASIAC ATTN: R. Livingston
ATTN: R. Tsunoda
Lockheed Missiles & Space Co, Inc ATIN: V. Gonzales /
ATTN:  J. Kumer ATTN: W. Chesnut
ATTN: R. Sears ATTN: W, Jaye '
| Lo
! M1 T Lincoln Lab Visidyne, Inc !
| ATTN: D. Towle ATTN: C. Humphray .
i ATTN: N. Doherty ATTN: H. Smith .
I ATTN: V. Vitto ATTN: J. Carpenter
ATTN: 0. Shepard
R&D Associates ATTN: W. Reidy
ATTN: B. Yoon
60
- L] T e T e e ™ - ¥,
‘ T g kg g e ad
e ] oy - ! :
st - PSS WO NP S NNV U S Y

=

. ko e







